REGULAR STRUCTURAL PAPERS

C27	0.4422 (9)	0.2589 (15)	-0.0049 (14)	0.078 (6)
C28	0.4902 (9)	0.3070 (15)	-0.0068 (14)	0.080 (6)
C29	0.5156 (8)	0.3845 (14)	0.0422 (12)	0.068 (5)
C30	0.4906 (7)	0.4194 (12)	0.0980 (11)	0.055 (4)
C31	0.4332 (5)	0.5275 (10)	0.2125 (9)	0.035 (3)
C32	0.4551 (7)	0.5472 (11)	0.2969 (10)	0.050 (4)
C33	0.4737 (8)	0.6400 (14)	0.3308 (13)	0.069 (5)
C34	0.4686 (7)	0.7119 (13)	0.2688 (12)	0.062 (5)
C35	0.4446 (8)	0.6941 (13)	0.1822 (12)	0.064 (5)
C36	0.4267 (7)	0.5981 (12)	0.1536(11)	0.058 (4)
C37	0.5143 (5)	-0.0167 (10)	0.3088 (9)	0.036 (3)
C38	0.5579 (6)	-0.0638 (11)	0.2946 (10)	0.048 (4)
C39	0.5950 (7)	-0.1231 (12)	0.3567 (11)	0.057 (4)
C40	0.5862 (8)	-0.1431 (14)	0.4287 (12)	0.065 (5)
C41	0.5418 (7)	-0.1010 (12)	0.4411 (11)	0.057 (4)
C42	0.5039 (6)	-0.0340 (11)	0.3808 (10)	0.044 (4)
C43	0.3037 (6)	-0.0822 (11)	0.1834 (10)	0.043 (3)
C44	0.2477 (7)	-0.1175 (11)	0.1334 (10)	0.046 (4)
C45	0.2315 (7)	-0.2101 (11)	0.1471 (11)	0.052 (4)
C46	0.2715 (7)	-0.2654 (12)	0.2111 (11)	0.053 (4)
C47	0.3252 (8)	-0.2306 (13)	0.2622 (12)	0.061 (5)
C48	0.3408 (7)	-0.1391 (11)	0.2458 (10)	0.050 (4)
C49	0.2602 (6)	0.1017 (10)	0.1085 (10)	0.043 (3)
C50	0.2195 (7)	0.1078 (11)	0.1464 (10)	0.049 (4)
C51	0.1700 (8)	0.1653 (13)	0.1121 (12)	0.062 (5)
C52	0.1619 (7)	0.2188 (13)	0.0400 (11)	0.059 (4)
C53	0.2031 (7)	0.2144 (12)	-0.0010 (11)	0.058 (4)
C54	0.2526 (7)	0.1527 (11)	0.0347 (10)	0.049 (4)
C11	0.4174 (3)	-0.1682 (5)	0.4840 (5)	0.111 (2)
C12	0.3015 (3)	-0.1663 (5)	0.4767 (5)	0.108 (2)
C13	0.1217 (4)	-0.0654 (7)	0.1935 (7)	0.163 (3)
C14	0.1438 (4)	-0.1164 (7)	0.3629 (7)	0.165 (4)
C55	0.3740 (11)	-0.1209 (18)	0.5321 (16)	0.103 (8)
C56	0.1513 (20)	-0.1556 (33)	0.2788 (32)	0.225 (20)
B 1	0.3608 (4)	0.0656 (7)	0.8486 (6)	0.153 (3)
F1	0.3348 (6)	0.0867 (10)	0.9031 (8)	0.153 (3)
F2	0.4172 (4)	0.0400 (10)	0.8923 (8)	0.153 (3)
F3	0.3321 (6)	-0.0082 (8)	0.7982 (8)	0.153 (3)
F4	0.3592 (6)	0.1439 (8)	0.8007 (8)	0.153 (3)

Table 2. Geometric parameters (Å, °)

		-	
Pt2Pt1	2.867 (1)	C31-P1	1.835 (14)
P1—Pt1	2.211 (4)	C18-P2	1.870 (16)
P3-Pt1	2.312 (4)	C43—P2	1.808 (15)
O1—Pt1	2.137 (8)	C49P2	1.840 (15)
C8-Pt1	2.063 (13)	C1—P3	1.830 (14)
P2—Pt2	2.206 (4)	C13-P3	1.805 (14)
P4Pt2	2.318 (3)	C19P3	1.845 (15)
01—Pt2	2.153 (9)	C7—P4	1.833 (14)
C2-Pt2	2.062 (13)	C16—P4	1.809 (15)
C15—P1	1.862 (15)	C37—P4	1.837 (14)
C25—P1	1.814 (15)		
P1—Pt1—Pt2	128.4 (1)	O1-Pt2-Pt1	47.8 (2)
P3Pt1Pt2	83.0(1)	O1-Pt2-P2	173.2 (2)
P3-Pt1-P1	94.3 (1)	O1-Pt2-P4	88.3 (2)
O1-Pt1-Pt2	48.3 (2)	C2-Pt2-Pt1	93.2 (4)
O1Pt1P1	176.0 (2)	C2-Pt2-P2	93.2 (4)
O1-Pt1-P3	87.7 (2)	C2-Pt2-P4	168.9 (4)
C8-Pt1-Pt2	93.6 (4)	C2-Pt2-01	82.4 (4)
C8-Pt1-P1	91.8 (4)	C1-P3-Pt1	112.6 (4)
C8-Pt1-P3	173.9 (4)	C7-P4-Pt2	114.2 (5)
C8-Pt1-O1	86.2 (4)	Pt2-01-Pt1	83.9 (3)
P2-Pt2-Pt1	127.8 (1)	C2-C1-P3	120.2 (10)
P4—Pt2—Pt1	84.8 (1)	C8-C7-P4	121.4 (10)
P4Pt2P2	96.7 (1)		

The authors gratefully acknowledge the help and facilities provided by Gordon W. Bushnell of the University of Victoria. MPR thanks the Federal Government of Canada and the British Columbia Provincial Government for support through the Challenge and Work-Study programs 1989-90.

© 1993 International Union of Crystallography Printed in Great Britain – all rights reserved Lists of structure factors, anisotropic thermal parameters and complete geometry have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 55990 (36 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England. [CIF reference: CD1032]

References

- Arnold, D. P., Bennett, M. A., Bilton, M. S. & Robertson, G. B. (1982). J. Chem. Soc. Chem. Commun. pp. 115-116.
- Arnold, D. P., Bennett, M. A., McLaughlin, G. M. & Robertson, G. B. (1983). J. Chem. Soc. Chem. Commun. pp. 34-36.
- Bennett, M. A., Berry, D. E. & Beveridge, K. A. (1990). Inorg. Chem. 29, 4148- 4152.
- Bennett, M. A., Berry, D. E., Bhargava, S. K., Ditzel, E. J., Robertson, G. B. & Willis, A. C. (1987). J. Chem. Soc. Chem. Commun. pp. 1613– 1615.
- Bushnell, G. W. (1988). *NEWCRYS2*. Program for data reduction. Univ. of Victoria, Canada.
- Dekker, G. P. C. M., Elsevier, C. J., Poelsma, S. N., Vrieze, K., van Leeuwen, P. W. N. M., Smeets, W. J. J. & Spek, A. L. (1992). *Inorg. Chim. Acta*, 195, 203–21
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359, and the Nonius CAD-4 manual.
- Sheldrick, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.

Acta Cryst. (1993). C49, 1322-1324

Structure of the Trigonal Phase of Bis(methinyltricobaltenneacarbonyl), [CCo₃(CO)₉]₂

URS GEISER AND ARAVINDA M. KINI

Chemistry and Materials Science Divisions.

Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439, USA

(Received 14 July 1992; accepted 25 January 1993)

Abstract

A second, trigonal, phase of $[CCo_3(CO)_9]_2$, μ_6 -dicarbide-1:2: $3\kappa^3C^1$;4:5: $6\kappa^3C^2$ -hexakis(tricarbonylcobalt)-(6 Co-Co), has been found, in addition to the monoclinic one reported earlier [Brice & Penfold (1972). Inorg. Chem. 11, 1381–1384]. The intermolecular geometry of the molecule in the two crystallographic modifications is virtually the same. The two Co₃ triangles are twisted by ca 28° with respect to each other, indicating a conformation between staggered and eclipsed. Optically active crystals of the trigonal phase form by spontaneous resolution of the enantiomorphic conformers.

Comment

One of the methods of preparing substituted tetrathiafulvalenes as precursors for the electrochemical synthesis of organic conductors or superconductors consists of the coupling of the corresponding substituted 1,3-dithiole-2-thione with a metal carbonyl [for a recent overview, see Williams, Ferraro, Thorn, Carlson, Geiser, Wang, Kini & Whangbo (1992)]. In such an attempt to couple 1,2,5-thiadiazolo[3,4-d]-[1,3]dithiole-2-thione to form bis(1,2,5-thiadiazolo)tetrathiafulvalene with $Co_2(CO)_8$ in refluxing toluene (Le Coustumer & Mollier, 1980), black distortedoctahedral crystals were formed. A crystal structure analysis was undertaken in order to identify the product, which proved to be a new crystallographic modification of $[CCo_3(CO)_9]_2$ (I). None of the desired tetrathiafulvalene product formed, indicating that $Co_2(CO)_8$ either reacts directly with the thiadiazole side group, or that the π -electron withdrawing nature of the thiadiazole group leads to a shift in the stability of the reaction intermediates and thus to different products. [CCo₃(CO)₉]₂ was first synthesized by Allegra, Mostardini Peronaci & Ercoli

(1966), who pointed out its sparingly soluble nature and great stability. The crystal structure of the (space monoclinic group C2/c) phase of [CCo₃(CO)₉]₂ was described by Brice & Penfold (1972).

As in the earlier crystallographic study, the molecules possess approximately 32 symmetry, but are located on a twofold rotation axis. In the trigonal modification, all molecules in the crystal adopt the same handedness; thus the system exhibits spontaneous resolution of the conformational enantio-The intramolecular geometry of both mers. modifications is virtually the same, considering the somewhat limited accuracy of the earlier structure determination (see Tables 2 and 3). The central C-C bond is somewhat shorter than a single bond, indicating limited hybridization. However, it is 0.06 Å longer than that found in the other modification. The apparent difference may result from the better experimental data and the fully anisotropic refinement of the present structure, rather than reflect a true chemical difference.

The axial Co–CO bonds are slightly longer than the equatorial ones; a result of the *trans* position of the axial ligands with respect to the Co-C(bridge) bond. As in the monoclinic modification, the conformation of the Co₃ triangles is neither eclipsed (torsion angles 0°) nor staggered (torsion angles 60°): the non-equivalent cis-torsion angles are 29.5 (6) and 26.4 (1.1)° for Co1-C-C-Co3 and Co2-C-C-Co2, respectively. No such angles are given by Brice & Penfold (1972), but from their Fig. 2, a similar value of $ca 30^{\circ}$ can be deduced.

Fig. 1. View of [CCo₃(CO)₉]₂ showing 50% probability ellipsoids for all atoms. Atomic labels are shown for one unique half of the molecule and for a few selected atoms for the other half. A twofold rotation axis approximately along the normal to the drawing plane intersects the molecule.

Experimental

Crystal data	
$[Co_6(C_2)(CO)_{18}]$	Mo $K\alpha$ radiation
$M_r = 881.8$	$\lambda = 0.7107 \text{ Å}$
Trigonal	Cell parameters from 2:
P3121	reflections
a = 9.710 (2) Å	$\theta = 10 - 12^{\circ}$
b = 9.710 (2) Å	$\mu = 3.546 \text{ mm}^{-1}$
c = 25.746 (6) Å	T = 295 (2) K
V = 2102.2 (8) Å ³	Distorted octahedron
Z = 3	$0.3 \times 0.3 \times 0.3$ mm
$D_r = 2.090 \text{ Mg m}^{-3}$	Black

Data collection

Nicolet P3/F diffractometer $R_{\rm int} = 0.035$ ω scans of width 1.2° and rate 2-12° min⁻¹ Absorption correction: by integration from crystal shape $T_{\rm min} = 0.487, T_{\rm max} =$ 0.533 4789 measured reflections 1475 independent reflections

1268 observed reflections

 $[F > 4\sigma(F)]$

1323

Cell parameters from 25
reflections
$\theta = 10 - 12^{\circ}$
$\mu = 3.546 \text{ mm}^{-1}$
T = 295 (2) K
Distorted octahedron
$0.3 \times 0.3 \times 0.3$ mm
Black

$\theta_{\rm max} = 25.0^{\circ}$
$h = -11 \rightarrow 5$
$k = -5 \rightarrow 11$
$l = -2 \rightarrow 30$
3 standard reflections
monitored every 96
reflections
intensity variation: <2%

Refinement		C6-Co2-C10	104.9 (3)	O7—C7—Co3	177.9 (6)
Definement on F	$(\Delta/\sigma) = 0.10$	C6-Co2-Co1	154.1 (2)	O8	179.6 (7)
Remientent on F	$(\Delta / 0)_{\rm max} = 0.10$	C6-Co2-Co3	98.8 (2)	09-09-003	177.2 (6)
Final $R = 0.025$	$\Delta \rho_{\rm max} = 0.32 \ {\rm e} \ {\rm \AA}^{-3}$	C4Co2C10	143.7 (3)	C10 ⁴ —C10—Co3	133.5 (4)
wR = 0.023	$\Delta a_{1} = -0.26 a^{1} A^{-3}$	C4—Co2—Co1	99.3 (2)	C10-C10-Co2	133.3 (2)
0.025	$\Delta p_{\rm min} = -0.20 \ {\rm e \ A}$	C4—Co2—Co3	99.3 (2)	C10-C10-Co1	132.2 (5)
5 = 0.948	Atomic scattering factors	C10-Co2-Co1	50.9 (2)	Co3-C10-Co2	78.8 (2)
1268 reflections	from International Tables	C10Co2Co3	50.4 (1)	Co3-C10-Co1	78.6 (2)
199 parameters	for X-ray Crystallography	Co1—Co2—Co3	59.94 (3)	Co2-C10-Co1	78.4 (2)
$w = \sigma^{-2}(F)$	(1974, Vol. IV)	Symn	netry code: (i) 2	$x - x, 1 - x + y, \frac{4}{3} - z$	

Table 1. Fractional atomic coordinates and equivalent Table 3. Average lengths of chemically equivalent isotropic thermal parameters $(Å^2)$

	$U_{ m eq}$	$= \frac{1}{3} \sum_{i} \sum_{j} U_{ij} a_i^* a_j^*$	*a _i .a _j .	
	x	y	z	$U_{\rm eq}$
Co1	0.71565 (9)	0.11919 (10)	0.64571 (3)	0.0363 (3
Co2	0.86331 (9)	0.01154 (9)	0.59985 (3)	0.0385 (3
Co3	0.92161 (9)	0.28451 (9)	0.58225 (3)	0.0387 (3
C1	0.6994 (7)	0.2716 (8)	0.6797 (2)	0.050 (3)
O 1	0.6870 (6)	0.3664 (6)	0.7012 (2)	0.087 (3)
C2	0.6251 (8)	-0.0285 (8)	0.6954 (2)	0.048 (3)
O2	0.5608 (6)	-0.1212 (6)	0.7262 (2)	0.074 (2)
C3	0.5493 (7)	0.0513 (8)	0.6000 (2)	0.049 (3)
O3	0.4493 (5)	0.0122 (6)	0.5708 (2)	0.068 (2)
C4	0.7246 (9)	-0.0912 (9)	0.5472 (2)	0.069 (3)
04	0.6385 (7)	-0.1563 (7)	0.5139(2)	0.124 (4)
C5	0.8108 (8)	-0.1541 (8)	0.6415 (2)	0.056 (3)
05	0.7750 (7)	-0.2619 (6)	0.6666 (2)	0.095 (3)
C6	1.0383 (8)	0.0239 (7)	0.5716(2)	0.054 (3)
O6	1.1460 (6)	0.0298 (7)	0.5532 (2)	0.083 (3)
C 7	1.1140 (8)	0.3590 (8)	0.5521 (2)	0.049 (3)
07	1.2345 (5)	0.4099 (6)	0.5329 (2)	0.069 (2)
C8	0.7981 (8)	0.2410 (8)	0.5241 (2)	0.057 (3)
08	0.7221 (6)	0.2137 (7)	0.4879 (2)	0.094 (3)
C9	0.9395 (9)	0.4726 (9)	0.5994 (2)	0.063 (3)
09	0.9489 (7)	0.5903 (6)	0.6081 (2)	0.101 (3)
C10	0.9424 (6)	0.1929 (6)	0.6463 (2)	0.028 (2)

Table 2. Geometric parameters (Å, °)

Co1-C2	1.791 (6)	Co3C8	1.832 (6)
Co1-C1	1.792 (6)	Co3-C10	1.932 (5)
Co1-C3	1.834 (6)	C1-01	1.132 (7)
Co1-C10	1.946 (5)	C2—O2	1.126 (7)
Co1-Co3	2.457 (1)	C3O3	1.134 (6)
Co1-Co2	2.458 (1)	C4—O4	1.142 (7)
Co2C5	1.782 (7)	C5O5	1.127 (7)
Co2-C6	1.796 (7)	C6—O6	1.123 (7)
Co2C4	1.818 (7)	C7—O7	1.130 (7)
Co2-C10	1.941 (5)	C8—O8	1.134 (7)
Co2—Co3	2.460 (1)	C9—09	1.123 (8)
Co3-C9	1.801 (8)	C10 ¹ —C10	1.426 (9)
Co3-C7	1.807 (7)		
C2-Co1-C1	95.9 (3)	C9-Co3-C7	98.2 (3)
C2-Co1-C3	100.3 (3)	C9-Co3-C8	98.9 (3)
C2-Co1-C10	107.5 (3)	C9-Co3-C10	106.1 (2)
C2-Co1-Co3	155.8 (2)	C9Co3Co1	97.7 (2)
C2-Co1-Co2	99.2 (2)	C9-Co3-Co2	154.3 (2)
C1-Co1-C3	100.6 (3)	C7—Co3—C8	99.6 (3)
C1Co1C10	104.1 (2)	C7-Co3-C10	103.1 (2)
C1-Co1-Co3	99.4 (2)	C7-Co3-Co1	152.7 (2)
C1-Co1-Co2	153.7 (2)	C7Co3Co2	98.4 (2)
C3-Co1-C10	140.3 (2)	C8-Co3-C10	143.1 (3)
C3-Co1-Co3	95.2 (2)	C8-Co3-Co1	99.7 (2)
C3-Co1-Co2	97.8 (2)	C8Co3Co2	97.5 (2)
C10-Co1-Co3	50.4 (1)	C10-Co3-Co1	50.9 (2)
C10Co1Co2	50.7 (1)	C10-Co3-Co2	50.7 (1)
Co3-Co1-Co2	60.07 (3)	Co1—Co3—Co2	59.99 (3)
C5—Co2—C6	97.9 (3)	01-C1-Co1	179.1 (6)
C5—Co2—C4	98.9 (3)	O2C2Co1	176.3 (6)
C5-Co2-C10	104.6 (2)	O3-C3-Co1	178.0 (5)
C5-Co2-Co1	97.5 (2)	O4-C4-Co2	179.2 (7)
C5-Co2-Co3	153.0 (2)	O5-C5-Co2	177.9 (6)
C6—Co2—C4	98.7 (3)	O6C6Co2	178.7 (6)

bonds (Å)

Monoclinic phase

Carbonyl	groups 3.	4 and	8 are	axial.	the	remainder	are	equatorial.
	0 F ,			,				

~~~					the second prime of	
0363 (3)	Bond type	Average	deviation	Range	(Brice & Penfold, 1972	2)
0385 (3)	Co-Co	2.458	0.001	2.457-2.460	2.457 (1)	
0387 (3)	Co-C(bridge)	1.940	0.006	1.9321.946	1.96 (1)	
050 (3)	Co-CO(eq.)	1.795	0.008	1.782-1.807	1.79 (1)	
087 (3)	Co-CO(ax.)	1.828	0.007	1.818-1.834	1.79 (1)	
007 (J)	C—O(eq.)	1.127	0.003	1.123-1.132	1.13 (1)	
040(3)	C—O(ax.)	1.137	0.004	1.134-1.142	1.15 (1)	
074 (2)						
049 (3)	The absolu	te config	uration of	the data c	rystal was tested b	v
068 (2)	the fellowing	na matha	ditha aha	much data	vore eveneed in th	
069 (3)	ule lonowi	ng meulo	a. ule obse	erved data	were averaged in th	e
124 (4)	point group	<b>321, to</b> :	yield 2492	unique allo	wed reflections $[R_{ii}]$	nt
056 (3)	= 0.031, 21	76 reflec	tions with	$F > 4\sigma(F)$	1: refinement of 19	9
095 (3)	voriables w		l out in hot	h anontion	ombio ano os orrespo	
054 (3)	variables w	as carried		in enantioni	orpine space groups	5.
083 (3)	Space	group	R	wF	s s	
049 (3)	P3	121	0.0298	0.027	8 1.011	
069 (2)	P3	₂ 21	0.0305	0.028	2 1.027	
057 (3)	D	1: . 1.	1		с .	

Rms

Based on the slightly better agreement factors, space group P3121 was assigned to the chosen data crystal. The achiral synthesis mixture is expected to yield crystals of each space group in equal amounts.

The UCLA Crystallographic Program Package (Strouse, 1985) was employed for the data reduction, structure solution and refinement.

Work at Argonne National Laboratory is sponsored by the US Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences, under contract W-31-109-ENG-38. We thank Dr H. H. Wang for helpful discussions and Dr Jack M. Williams for his support.

Lists of structure factors and anisotropic thermal parameters have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 71036 (7 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England. [CIF reference: HH1034]

# References

- Allegra, G., Mostardini Peronaci, E. & Ercoli, R. (1966). J. Chem. Soc. Chem. Commun. pp. 549-550.
- Brice, M. D. & Penfold, B. R. (1972). Inorg. Chem. 11, 1381-1384. Le Coustumer, G. & Mollier, Y. (1980). J. Chem. Soc. Chem.
- Commun. pp. 38-39.
- Strouse, C. (1985). UCLA Crystallographic Package. Univ. of California, Los Angeles, USA.
- Williams, J. M., Ferraro, J. R., Thorn, R. J., Carlson, K. D., Geiser, U., Wang, H. H., Kini, A. M. & Whangbo, M.-H. (1992). Organic Superconductors (Including Fullerenes), ch. 2. New Jersey: Prentice Hall.